If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x+25=16
We move all terms to the left:
4x^2+20x+25-(16)=0
We add all the numbers together, and all the variables
4x^2+20x+9=0
a = 4; b = 20; c = +9;
Δ = b2-4ac
Δ = 202-4·4·9
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16}{2*4}=\frac{-36}{8} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16}{2*4}=\frac{-4}{8} =-1/2 $
| 1.2+4x=5x-1.2 | | x/6.4=6.3 | | 2=q−5 | | 4c+$2.20=$24.20 | | 19=174-6d | | 7.87x+100=61.9369+10x | | 2=j2 | | 10225=5500+225n | | 3.50+4.50b=17 | | $3.50+$4.50b=$17 | | 10–1/4x=7 | | -2b-2=6 | | 10,225=5500+225n | | 9=7u-4/4+9u-5/2 | | (2x-5)(6x-11)=0 | | 2x+5(1-x)=-3(x+2)+11 | | (6x-11)(2x+5)=0 | | -7w+2(w+3)=36 | | y=33-2 | | y=31-2 | | 2w+(2w+4.25)=125.5 | | 3x+27=96 | | -1/2a^2=5/6aa=7 | | 5y-9=95 | | 57y+23=45 | | 3(-6x+1)=x+24+2x | | 8y+9=13 | | 0.2(x-2)=0.10(x+6) | | 1.92(6.2-3x)-4.81=-18.46 | | 12=-6d-6 | | 3x+7+4x=180 | | 3x2–50=x2+192 |